Refinement of the motorised laminectomy-assisted rat spinal cord injury model by analgesic treatment

Research output: Contribution to journalJournal articleResearchpeer-review

Documents

  • Fulltext

    Final published version, 2.19 MB, PDF document

Usage and reporting of analgesia in animal models of spinal cord injury (SCI) have been sparse and requires proper attention. The majority of experimental SCI research uses rats as an animal model. This study aimed to probe into the effects of some commonly used regimens with NSAIDs and opioids on well-being of the rats as well as on the functional outcome of the model. This eight-week study used forty-two female Wistar rats (Crl: WI), randomly and equally divided into 6 treatment groups, viz. I) tramadol (5mg/kg) and buprenorphine (0.05mg/kg); II) carprofen (5mg/kg) and buprenorphine (0.05mg/kg); III) carprofen (5mg/ kg); IV) meloxicam (1mg/kg) and buprenorphine (0.05mg/kg); V) meloxicam (1mg/kg); and VI) no analgesia (0.5 ml sterile saline). Buprenorphine was administered twice daily whereas other treatments were given once daily for five days post-operatively. Injections were given subcutaneously. All animals underwent dental burr-assisted laminectomy at the T10-T11 vertebra level. A custom-built calibrated spring-loaded 200 kilodynes force deliverer was used to induce severe SCI. Weekly body weight scores, Rat Grimace Scale (RGS), and dark-phase home cage activity were used as markers for well-being. Weekly Basso Beattie and Bresnahan (BBB) scores served as markers for functionality together with Novel Object Recognition test (NOR) at week 8 and terminal histopathology using area of vacuolisation and live neuronal count from the ventral horns of spinal cord. It was concluded that the usage of analgesia improved animal wellbeing while having no effects on the functional aspects of the animal model in comparison to the animals that received no analgesics.

Original languageEnglish
Article numbere0294720
JournalPLoS ONE
Volume19
Issue number1
Number of pages23
ISSN1932-6203
DOIs
Publication statusPublished - 2024

Bibliographical note

Publisher Copyright:
Copyright: © 2024 Vijayakumar Sreelatha et al.

ID: 381462099